

XPath Reference
Composer: Edward Willemsen, 2007.

Page | 2

Contents
1. Introduction ... 4

2. Context for XPath Expressions .. 4

2.1. Basic XPath Expressions ... 5

2.1.1. Examples .. 5

3. Operators and Special Characters ... 6

3.1. Path Operators ... 7

3.1.1. Examples .. 8

3.2. Wildcard Character ... 8

3.2.1. Examples .. 8

3.3. Attributes .. 8

3.3.1. Examples .. 8

3.4. Finding Multiple Attributes .. 9

3.4.1. Examples .. 9

4. XPath Collections ... 9

4.1. Examples ... 9

4.2. Indexing into a Collection ... 9

4.2.1. Examples .. 9

4.3. Finding the Last Element in a Collection .. 10

4.3.1. Examples .. 11

4.4. Grouping ... 11

4.4.1. Examples .. 11

5. Filters and Filter Patterns .. 11

5.1. Examples ... 12

6. Boolean, Comparison, and Set Expressions .. 12

6.1. Logical-and and Logical-or .. 13

6.1.1. Examples .. 13

6.2. Boolean not .. 14

6.2.1. Examples .. 14

7. Comparisons .. 15

7.1. Examples ... 16

7.2. Order of Precedence for Comparisons ... 16

7.3. Binary Comparison Operators .. 16

7.3.1. Examples .. 17

Page | 3

8. Set Operations ... 19

8.1. Union (|) Operator ... 19

8.2. Precedence ... 20

8.3. Examples ... 22

9. Location Paths ... 25

10. XPath Examples ... 26

10.1. Example of Unions (|) ... 29

11. XPath Functions ... 30

11.1. Node-Set Functions .. 30

11.2. String Functions [XPath] ... 30

11.3. Boolean Functions .. 31

11.4. Number Functions .. 31

11.5. Microsoft XPath Extension Functions .. 32

11.5.1. XPath Extension Functions for XSD Support ... 32

11.5.2. XPath Extension Functions of Miscellaneous Utilities ... 32

12. Source .. 33

13. Appendix A – Inventory XML ... 34

Page | 4

1. Introduction
An XML Path Language (Xpath) expression uses a path notation, like those used in URLs, for

addressing parts of an XML document. The expression is evaluated to yield an object of the node-set,

Boolean, number, or string type. For example, the expression book/author will return a node-set of

the <author> elements contained in the <book> elements, if such elements are declared in the

source XML document. In addition, an XPath expression can have predicates (filter expressions) or

function calls. For example, the expression book[@type="Fiction"] refers to the <book> elements

whose type attribute is set to "Fiction".

The following table summarizes some of the analogous features between URLs and XPath

expressions.

URLs XPath expressions

Hierarchy comprised of folders and files in a file
system.

Hierarchy comprised of elements and other
nodes in an XML document.

Files at each level have unique names. URLs
always identify a single file.

Element names at each level might not be
unique. XPath expressions identify a set of all the
matching elements.

Evaluated relative to a particular folder, called
the "current folder."

Evaluated relative to a particular node called the
"context" for the expression.

As a XML syntax reminder:

uTools

The <a> tags are elements and the ‘href’ is an attribute.

2. Context for XPath Expressions
The evaluation of an XPath expression depends on the context against which the expression

operates. The context consists of the node against which the expression is evaluated and its

associated environment, which includes the following:

 The position of the context node in the document order, relative to its siblings.

 The size of the context — that is, the number of siblings of the context node plus one.

 Variable bindings with which references to a variable can be resolved.

 A function library.

 The namespace declarations in scope for the expression.

To better appreciate the concept of context, consider a tree containing nodes. Asking for all nodes

named X from the root of the tree returns one set of results, while asking for those nodes from a

branch in the tree returns a different set of results. Thus, the result of an expression depends upon

the context against which it executes.

XPath expressions can match specific patterns at one particular context, return the results, and

perform additional operations relative to the context of the returned nodes. This gives XPath

expressions extraordinary flexibility in searching throughout the document tree.

Page | 5

2.1. Basic XPath Expressions
The following are basic types of XPath expressions. Each type is described below.

 Current context

 Document root

 Root element

 Recursive descent

 Specific element

2.1.1. Examples

The following examples show some basic XPath expressions. More complex expressions are possible

by combining these simple expressions together and by using the various XPath operators and special

characters.

Current context

An expression prefixed with a period and forward slash (./) explicitly uses the current context as the

context. For example, the following expression refers to all <author> elements within the current

context:

./author

Note that this is equivalent to the following:

author

Document root

An expression prefixed with a forward slash (/) uses the root of the document tree as the context.

For example, the following expression refers to the <bookstore> element at the root of this

document:

/bookstore

Root element

An expression that uses a forward slash followed by an asterisk (/*) uses the root element as the

context. For example, the following expression finds the root element of the document:

/*

Recursive descent

An expression that uses the double forward slash (//) indicates a search that can include zero or

more levels of hierarchy. When this operator appears at the beginning of the pattern, the context is

relative to the root of the document. For example, the following expression refers to all <author>

elements anywhere within the current document:

//author

Page | 6

The .// prefix indicates that the context starts at the level in the hierarchy indicated by the current

context.

Specific elements

An expression that starts with an element name refers to a query of the specific element, starting

from the current context node. For example, the following expression refers to the <background.jpg>

element within the <images> element in the current context node:

images/background.jpg

The following expression refers to the collection of <book> elements within the <bookstore>

elements in the current context node:

bookstore/book

The following expression refers to all <first.name> elements in the current context node:

first.name

 Note
Element names can include the period character (.). These names can be used just like any other
name.

Context in the DOM

When using XPath expressions with the Microsoft XML DOM, the context is the Node object whose

selectNodes method or selectSingleNode method is called.

When using XPath directly from the DOM, you define the context from a particular node.

Context in XSLT

When using XPath directly from the XSLT, you define the context by the current node.

3. Operators and Special Characters
XPath expressions are constructed using the operators and special characters shown in the following

table.

Operator Comment

/ Child operator; selects immediate children of the left-side collection. When this
path operator appears at the start of the pattern, it indicates that children should
be selected from the root node.

// Recursive descent; searches for the specified element at any depth. When this path
operator appears at the start of the pattern, it indicates recursive descent from the
root node.

. Indicates the current context.

.. The parent of the current context node.

* Wildcard; selects all elements regardless of the element name.

Page | 7

@ Attribute; prefix for an attribute name.

@* Attribute wildcard; selects all attributes regardless of name.

: Namespace separator; separates the namespace prefix from the element or
attribute name.

() Groups operations to explicitly establish precedence.

[] Applies a filter pattern.

[] Subscript operator; used for indexing within a collection.

+ Performs addition.

- Performs subtraction.

div Performs floating-point division according to IEEE 754.

* Performs multiplication.

mod Returns the remainder from a truncating division.

This table does not include Boolean and set operators, which are listed in ‘Boolean, Comparison, and

Set Expressions’ or ‘Set Operations’.

Precedence order (from highest precedence to lowest) is defined as indicated in the following table.

Precedence Character Purpose

1 () Grouping

2 [] Filters

3 / // Path operations

The group operator, (), is applicable only at the top-level path expression. For example,

(//author/degree | //author/name) is a valid grouping operation, but //author/(degree | name) is

not.

The filter pattern operators ([]) have a higher precedence than the path operators (/ and //). For

example, the expression //comment()[3] selects all comments with an index equal to 3 relative to the

comment's parent anywhere in the document. This differs from the expression (//comment())[3],

which selects the third comment from the set of all comments relative to the parent. The first

expression can return more than one comment, while the latter can return only one comment.

These operators and special characters are described in detail throughout this reference.

3.1. Path Operators
The collection of elements of a certain type can be determined using the path operators (/ and //).

These operators take as their arguments a "left side" collection on which to perform the selection

and a "right side" collection indicating which elements to select. The child operator (/) selects from

immediate children of the left-side collection, while the descendant operator (//) selects from

arbitrary descendants of the left-side collection. In effect, // can be considered a substitute for one

or more levels of hierarchy.

Note that the path operators change the context as the query is performed. By stringing path

operators together, users can traverse the document tree.

Page | 8

3.1.1. Examples

Expression Refers to

author/first-name All <first-name> elements within an <author> element of the
current context node.

bookstore//title All <title> elements one or more levels deep in the <bookstore>
element (arbitrary descendants). Note that this is different from
the following pattern, bookstore/*/title.

bookstore/*/title All <title> elements that are grandchildren of <bookstore>
elements.

bookstore//book/excerpt//emph All <emph> elements anywhere inside <excerpt> children of
<book> elements, anywhere inside the <bookstore> element:

.//title All <title> elements one or more levels deep in the current
context. Note that this situation is essentially the only one in
which the period notation is required.

3.2. Wildcard Character
An element can be referenced without using its name by substituting the wildcard (*) collection. The

* collection refers to all elements that are children of the current context, regardless of the tag

name.

3.2.1. Examples

Expression Refers to

author/* All element children of <author> elements.

book/*/last-name All <last–name> elements that are grandchildren of <book>
elements.

/ All grandchildren elements of the current context.

my:book The <book> element from the my namespace.

my:* All elements from the my namespace.

Note that the pattern *:book is not supported.

3.3. Attributes
XPath denotes attribute names with the @ symbol. Attributes and child elements are treated

impartially, and capabilities are equivalent between the two types wherever possible.

 Note
Attributes cannot contain child elements, so syntax errors occur when path operators are applied to
attributes. In addition, you cannot apply an index to attributes because, by definition, no order is
defined for attributes.

3.3.1.Examples

Expression Refers to

@style The style attribute of the current element context.

price/@exchange The exchange attribute of <price> elements within the current context.

book/@style The style attribute of all <book> elements.

Page | 9

Note that the following example is not valid, because an attribute cannot have any children.

price/@exchange/total

3.4. Finding Multiple Attributes
All attributes of an element can be returned using @*. This is potentially useful for applications that

treat attributes as fields in a record.

3.4.1. Examples

Expression Refers to

@* All attributes of the current context node.

@my:* All attributes from the my namespace. This does not include unqualified
attributes on elements from the my namespace.

Note that the pattern @*:title is not supported.

4. XPath Collections
Collections returned by XPath queries preserve document order, hierarchy, and identity, to the

extent that these are defined. That is, a collection of elements is returned in document order without

repeated elements. Because by definition attributes are unordered, there is no implicit order to

attributes returned for a specific element.

The collection of all elements with a certain tag name is expressed using the tag name itself. This can

be qualified by showing that the elements are selected from the current context by using a period

and forward slash (./), but the current context is used by default and does not have to be noted

explicitly.

4.1. Examples

Expression Refers to

./first-name All <first-name> elements. Note that this expression is equivalent to the
expression that follows.

first-name All <first-name> elements.

4.2. Indexing into a Collection
XPath expressions make it easy to query a specific node within a set of nodes. Simply enclose the

index ordinal within square brackets. The ordinal is 1-based (the first element is number 1).

The square bracket characters ([]) have higher precedence than the slash characters (/ and //). (For

more information see Operators and Special Characters).

4.2.1. Examples

Expression Refers to

author[1] The first <author> element.

author[first-name][3] The third <author> element that has a <first-name> child element.

Page | 10

Note that indexes are relative to the set being filtered. Consider, for example, the following data.

<x>

 <y/>

 <y/>

</x>

<x>

 <y/>

 <y/>

</x>

The following table shows how to select specific <x> and <y> elements.

Expression Refers to

x/y[1] The first <y> inside each <x>.

(x/y)[1] The first <y> from the entire set of <y> elements within <x> elements.

x[1]/y[1] The first <y> inside the first <x>.

The examples above are simple references to XPath collections that use implied defaults, such as the

child:: axis. For this axis, the collection of child nodes is indexed in forward document order.

For other axes, such as ancestor::, use the axis name explicitly in your XPath expression. For this axis,

the collection of ancestors is indexed in reverse document order. Consider this example from the

previous table:

x/y[1]

This expression is equivalent to this one:

x/child::y[1]

Both expressions mean "for each <x> element, select the first child element named <y>."

The following example uses the same syntax.

x/ancestor::y[1]

This example translates to "for each <x> element, select the first ancestor element (in reverse-

document order) named <y>". The syntax is the same, but the order is reversed.

4.3. Finding the Last Element in a Collection
The last() function returns True for the last element in a collection. Note that last is relative to the

parent node.

Page | 11

4.3.1. Examples

Expression Refers to

book[last()] The last <book> element.

book/author[last()] The last <author> element inside each <book> element.

(book/author)[last()] The last <author> element from the entire set of <author> elements
inside <book> elements.

4.4. Grouping
Parentheses can be used to group collection operators for clarity or where the normal precedence is

inadequate to express an operation. Grouping operators can be used in any filter expressions

(predicates), such as author[(degree or award)and publication]. They can also be used in the top-

level step expression, such as (book|magazine) or (author/degree | book/award). They cannot be

applied to lower-level step expressions. For example, author/(degree | award)is not valid.

4.4.1. Examples

Expression Refers to

(book/author) All <author> elements that are child elements of any <book> element
from the current context node.

author[(degree or award)
and publication]

All <author> elements that contain at least one <degree> or <award>
element and at least one <publication> element.

5. Filters and Filter Patterns
Constraints and branching can be applied to any collection by adding a filter clause, [pattern], to the

collection. The filter is analogous to the SQL WHERE clause. The filter contains a pattern within it

called the filter pattern. The filter pattern evaluates to a Boolean value and is tested for each

element in the collection. Any elements in the collection failing the filter pattern test are omitted

from the result collection.

For convenience, if a collection is placed within the filter, a Boolean TRUE is generated if the

collection contains any members and a FALSE is generated if the collection is empty. An expression

such as author/degree implies a collection-to-Boolean conversion function that evaluates to TRUE if

there exists an <author> element with a child element named <degree>.

Note that any number of filters can appear at a given level of an expression. Empty filters are not

allowed.

Filters are always evaluated with respect to a context. In other words, the expression book[author]

means that for every <book> element that is found, test whether it has an <author> child element.

Likewise, book[author = 'Bob'] means that for every <book> element that is found, test whether it

has an <author> child element with the value Bob. One can examine the value of the context as well

by using the period (.) character. For example, book[. = 'Trenton'] means that for every book that is

found in the current context, test whether its value is Trenton.

Page | 12

5.1. Examples

Expression Refers to

book[excerpt] All <book> elements that contain at least one <excerpt> element.

book[excerpt]/title All <title> elements inside <book> elements that contain at least
one <excerpt> element.

book[excerpt]/author[degree] All <author> elements that contain at least one <degree> element,
and are inside of <book> elements that contain at least one
<excerpt> element.

book[author/degree] All <book> elements that contain at least one <author> element
with at least one <degree> child element.

book[excerpt][title] All <book> elements that contain at least one <excerpt> element
and at least one <title> element.

6. Boolean, Comparison, and Set Expressions
Filter patterns can contain Boolean expressions, comparison expressions, and set expressions.

Shortcuts listed in the following table represent alternative symbols that are provided in this XSL

Transformations (XSLT) implementation. This documentation discusses these expression operators.

Operator Description

and Logical-and

or Logical-or

not() Negation

= Equality

!= Not equal

< * Less than

<= * Less than or equal

> * Greater than

<= * Greater than or equal

| Set operation; returns the union of two sets of
nodes

* Extended XPath method

The World Wide Web Consortium (W3C) syntax for operator keywords uses white space and other

separators rather than the dollar sign character ($) used in version 2.5. In the W3C syntax, a binary

keyword of the form xxx can be expressed as wsxxxws, where ws refers to a token terminator that

can be white space, single quote characters ('), or double quote characters ("). Unary operators such

as not() use functional notation. Although the Microsoft implementation supports both syntaxes, it is

recommended that the W3C syntax be used for future compatibility.

Precedence order (from highest to lowest) for comparison operators and Boolean operators is shown

in the following table.

Order Operator Type

1 () Grouping

2 [] Filters

3 / Path operations

Page | 13

//

4 < or <
<= or <=
> or >
>= or >=

Comparisons

5 =
!=

Comparisons

6 | Union

7 not() Boolean not

8 And Boolean and

9 Or Boolean or

When the operators are used in an XML document, such as an XSLT style sheet, the < and > tokens

must be escaped as < and >, respectively. For example, the following XSLT instruction invokes

an XSLT template rule on all <book> elements whose <price> element has a numeric value less than

or equal to 10.

 <xsl:apply-templates select="book[price <= 10]"/>

When an XPath expression is used with DOM, the < and > operators need not to be escaped. For

example, the following JScript statement selects all <book> elements whose <price> element has a

numeric value less than or equal to 10.

var cheap_books = dom.selectNodes("book[price <= 10]");

Boolean expressions can match all nodes of a particular value or all nodes with nodes in particular

ranges. The following is an example of a Boolean expression that returns false.

1 >= 2

Operators are case-sensitive.

6.1. Logical-and and Logical-or
The Boolean operators and and or perform logical-and and logical-or operations, respectively. These

operators, in conjunction with grouping parentheses, can be used to build sophisticated logical

expressions.

6.1.1. Examples

Expression Refers to

author[degree and award] All <author> elements that contain at least one
<degree> element and at least one <award>
element.

author[(degree or award) and publication] All <author> elements that contain at least one
<degree> or <award> element, and at least one
<publication> element.

Page | 14

6.2. Boolean not
The Boolean not operator negates the value of an expression within a filter pattern.

6.2.1. Examples

Expression Refers to

author[degree and not(publication)] All <author> elements that contain at least one
<degree> element, but contain no <publication>
elements

author[not(degree or award) and publication] All <author> elements that contain at least one
<publication> element, but do not contain any
<degree> elements or <award> elements.

XML File (test.xml)

<?xml version="1.0"?>

<test>

 <x a="1">

 <x a="2" b="B">

 <x>

 <y>y31</y>

 <y>y32</y>

 </x>

 </x>

 </x>

 <x a="2">

 <y>y2</y>

 </x>

 <x a="3">

 <y>y3</y>

 </x>

</test>

XSLT File (test.xsl)

The following XSLT stylesheet selects all the <x> elements without any attributes.

<?xml version='1.0'?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" omit-xml-declaration="yes" indent="yes"/>

<!-- suppress text nodes not covered in subsequent template rule -->

<xsl:template match="text()"/>

Page | 15

<xsl:template match="*">

 <xsl:element name="{name()}">

 <xsl:apply-templates select="*|@*"/>

 <xsl:if test="text()">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:element>

</xsl:template>

<xsl:template match="@*">

 <xsl:attribute name="{name()}">

 <xsl:value-of select="."/>

 </xsl:attribute>

</xsl:template>

<xsl:template match="/test">

 <xsl:apply-templates select="//x[not(@*)] "/>

</xsl:template>

</xsl:stylesheet>

Output

The transformation, when applied to the XML file given above yields the following result:

<x>

 <y>y31</y>

 <y>y32</y>

</x>

7. Comparisons
To compare two objects in XPath, use the = sign to test for equality, or use != to test for inequality.

For a comparison operation, exactly two operands must be supplied. Comparisons are then made by

evaluating each operand, and converting them as needed, so they are of the same type. This is done

according to the process described below, in "Order of Precedence For Comparisons".

All elements and attributes are strings, but are automatically cast as integer values for numeric

comparisons. Literal numeric values are cast to long or double types during comparison operations,

as shown in the following table.

For information about < and other binary comparison operators, see "Binary Comparison

Operators", shown further in this document.

Page | 16

Literal type Comparison Example

String text(lvalue) op text(rvalue) a < GGG

Integer (long) lvalue op (long) rvalue a < 3

Real (double) lvalue op (double) rvalue a < 3.1

Single or double quotation marks can be used for string delimiters in expressions. This makes it easier

to construct and pass patterns from within scripting languages.

For more information about how comparisons are performed using XPath, see section 3.4

("Booleans") of the XML Path Language (XPath) Version 1.0 (W3C Recommendation 16 November

1999) at www.w3.org/TR/xpath.

7.1. Examples

Expression Refers to

author[last-name = "Bob"] All <author> elements that contain at least one <last-
name> element with the value Bob.

author[last-name[1] = "Bob"] All <author> elements whose first <last-name> child
element has the value Bob.

author/degree[@from != "Harvard"] All <author> elements that contain <degree> elements
with a from attribute that is not equal to "Harvard".

author[last-name = /editor/last-name] All <author> elements that contain a <last-name>
element that is the same as the <last-name> element
inside the <editor> element under the root element.

author[. = "Matthew Bob"] All <author> elements whose string value is Matthew
Bob.

7.2. Order of Precedence for Comparisons
Comparisons with regard to data types obey the order of precedence.

If at least one operand is a Boolean, each operand is first converted to a Boolean.

Otherwise, if at least one operand is a number, each operand is first converted to a number.

Otherwise, if at least one operand is a date, each operand is first converted to a date.

Otherwise, both operands are first converted to strings.

7.3.Binary Comparison Operators
A set of binary comparison operators compares numbers and returns Boolean results. The <, <=,

>, and >= operators are used for less than, less than or equal, greater than, and greater than or

equal, respectively. Single or double quotation marks can be used for string delimiters in expressions.

This makes it easier to construct and pass patterns within scripting languages.

Page | 17

Note that these comparison operators work only with numbers. You can compare strings for

equality, but if you want to compare strings to determine which comes first in sort order, you need

to use the Microsoft XPath Extension Functions (http://msdn2.microsoft.com/en-

us/library/ms256453.aspx).

7.3.1. Examples

Expression Refers to

author[last-name = "Bob" and price > 50] All <author> elements that contain a <last-
name> element with the value Bob, and a
<price> element with a value greater than 50.

degree[@from != "Harvard"] All <degree> elements with a from attribute that
is not equal to "Harvard".

book[position() <= 3] The first three <book> elements (1, 2, 3) in the
XML file.

XML File (test.xml)

<?xml version="1.0"?>

<test>

 <x a="1">

 <x a="2" b="B">

 <x>

 <y>y31</y>

 <y>y32</y>

 </x>

 </x>

 </x>

 <x a="2">

 <y>y2</y>

 </x>

 <x a="3">

 <y>y3</y>

 </x>

</test>

XSLT File (test.xsl)

The following XSLT style sheet selects all the <x> elements that are the first of their siblings in the

document order.

<?xml version='1.0'?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" omit-xml-declaration="yes" indent="yes"/>

Page | 18

<!-- Suppress text nodes not covered in subsequent template rule. -->

<xsl:template match="text()"/>

<xsl:template match="*">

 <xsl:element name="{name()}">

 <xsl:apply-templates select="*|@*"/>

 <xsl:if test="text()">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:element>

</xsl:template>

<xsl:template match="@*">

 <xsl:attribute name="{name()}">

 <xsl:value-of select="."/>

 </xsl:attribute>

</xsl:template>

<xsl:template match="/test">

 <xsl:apply-templates select="//x[position() = 1] "/>

</xsl:template>

</xsl:stylesheet>

Formatted Output

The transformation applied to the XML file above yields the following result:

<x a="1">

 <x a="2" b="B">

 <x>

 <y>y31</y>

 <y>y32</y>

 </x>

 </x>

</x>

<x a="2" b="B">

 <x>

 <y>y31</y>

 <y>y32</y>

 </x>

</x>

<x>

 <y>y31</y>

 <y>y32</y>

</x>

Page | 19

8. Set Operations
XML Path Language (XPath) supports the set operation |.

8.1. Union (|) Operator
The |, or union, operator returns the union of its two operands, which must be node-sets. For

example, //author | //publisher returns a node-set that combines all the //author nodes and all the

//publisher nodes. Multiple union operators can be chained together to combine multiple node-sets.

For example, //author | //publisher | //editor | //book-seller returns a node-set containing all

//author, //publisher, //editor, and //book-seller elements. The union operator preserves document

order and does not return duplicates.

Expression Refers to

first-name | last-name A node set containing <first-name> and <last-
name> elements in the current context.

(bookstore/book | bookstore/magazine) A node set containing <book> or <magazine>
elements inside a <bookstore> element.

book | book/author A node set containing all <book> elements and
all <author> elements within <book> elements.

(book | magazine)/price The node set containing all <price> elements of
either <book> or <magazine> elements.

The following example illustrates the effect of the union operator.

XML File (test.xml)

<?xml version="1.0"?>

<test>

 <x a="1">

 <x a="2" b="B">

 <x>

 <y>y31</y>

 <y>y32</y>

 </x>

 </x>

 </x>

</test>

XSLT File (test.xsl)

The following XSLT style sheet selects all the <x> elements whose a attribute is equal to 2, plus those

<x> elements that have no attributes.

<?xml version='1.0'?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" omit-xml-declaration="yes" indent="yes"/>

Page | 20

 <!-- Suppress text nodes not covered in subsequent template rule. -->

 <xsl:template match="text()"/>

 <!-- Handles a generic element node. -->

 <xsl:template match="*">

 <xsl:element name="{name()}">

 <xsl:apply-templates select="*|@*" />

 <xsl:if test="text()">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:element>

 </xsl:template>

 <!-- Handles a generic attribute node. -->

 <xsl:template match="@*">

 <xsl:attribute name="{name()}">

 <xsl:value-of select="."/>

 </xsl:attribute>

 </xsl:template>

 <xsl:template match="/test">

 <xsl:apply-templates select="//x[@a=2] | //x[not(@*)]"/>

 </xsl:template>

</xsl:stylesheet>

The transformation yields the following result:

<x a="2" b="B">

 <x>

 <y>31</y>

 <y>y32</y>

 </x>

</x>

<x>

 <y>y31</y>

 <y>y32</y>

</x>

8.2. Precedence
Precedence order (from highest precedence to lowest) between Boolean and comparison operators

is shown in the following table.

Order Operator Type

1 () Grouping

2 [] Filters

Page | 21

3 /
//

Path operations

4 <
<=
>
>=

Comparisons

5 =
!=

Comparisons

6 | Union

7 not() Boolean not

8 and Boolean and

9 or Boolean or

The following example illustrates the effect of the operator precedence listed above.

XML File (test.xml)

<?xml version="1.0"?>

<test>

 <x a="1">

 <x a="2" b="B">

 <x>

 <y>y31</y>

 <y>y32</y>

 </x>

 </x>

 </x>

 <x a="1">

 <x a="2">

 <y>y21</y>

 <y>y22</y>

 </x>

 </x>

 <x a="1">

 <y>y11</y>

 <y>y12</y>

 </x>

 <x>

 <y>y03</y>

 <y>y04</y>

 </x>

</test>

Page | 22

Basic XSLT File (test.xsl)

We will use this basic XSLT file as a starting point for the series of illustrations that follow.

<?xml version='1.0'?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" omit-xml-declaration="yes" indent="yes"/>

 <!-- Suppress text nodes not covered in subsequent template rule. -->

 <xsl:template match="text()"/>

 <!-- Handles a generic element node. -->

 <xsl:template match="*">

 <xsl:element name="{name()}">

 <xsl:apply-templates select="*|@*" />

 <xsl:if test="text()">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:element>

 </xsl:template>

 <!-- Handles a generic attribute node. -->

 <xsl:template match="@*">

 <xsl:attribute name="{name()}">

 <xsl:value-of select="."/>

 </xsl:attribute>

 </xsl:template>

</xsl:stylesheet>

8.3. Examples
Case 0. Test run

You can add the following template-rule to the XSLT style sheet.

<xsl:template match="/test">

 <xsl:apply-templates select="*|@*/>

 </xsl:template>

This will produce an XML document identical to the original one, without the <?xml version="1.0"?>

processing instruction.

The following cases show different ways of writing this template rule. The point is to show the order

in which the XPath operators bind to an element.

Case 1: () binds tighter than []

The following template rule selects the first <y> element in the document order, from all the <y>

elements in the source document.

Page | 23

<xsl:template match="/test">

 <xsl:apply-templates select="(//y)[1]"/>

 </xsl:template>

The result is as follows:

<y>y31</y>

Case 2: [] binds tighter than / or //

The following template rule selects all the <y> elements that are the first among their siblings.

<xsl:template match="/test">

 <xsl:apply-templates select="//y[1]"/>

</xsl:template>

The result is as follows:

<y>y31</y>

<y>y21</y>

<y>y11</y>

<y>y03</y>

Case 3: and, not

The following template rule selects all the <x> elements that have no <x> child elements, that have

an <x> parent element, and that do not have any attributes.

<xsl:template match="/test">

 <xsl:apply-templates select=

 "//x[./ancestor::*[name()='x'] and *[name()!='x'] and not(@*)]"/>

</xsl:template>

The result is a single <x> element, listed below with its children:

<x>

 <y>y31</y>

 <y>y32</y>

</x>

Case 4: or, and, not

The following template rule selects each <x> elements that is a child of an <x> element; or, that is not

a parent of an <x> element and has no attributes.

<xsl:template match="/test">

 <xsl:apply-templates select=

 "//x[./ancestor::*[name()='x'] or *[name()!='x'] and not(@*)]"/>

</xsl:template>

Page | 24

The result is a node set containing the following <x> elements, listed below with its children:

<x a="2" b="B">

 <x>

 <y>y31</y>

 <y>y32</y>

 </x>

</x>

<x>

 <y>y31</y>

 <y>y32</y>

</x>

<x a="2">

 <y>y21</y>

 <y>y22</y>

</x>

<x>

 <y>y03</y>

 <y>y04</y>

</x>

Case 5: and, or, not

The following template rule selects each <x> element that is a child of an <x> element but not a

parent of an <x> element; or, that has no attributes.

<xsl:template match="/test">

 <xsl:apply-templates select=

 "//x[./ancestor::*[name()='x'] and *[name()!='x'] or not(@*)]"/>

</xsl:template>

The result is a node set containing the following <x> elements, listed below with its children:

<x>

 <y>y31</y>

 <y>y32</y>

</x>

<x a="2">

 <y>y21</y>

 <y>y22</y>

</x>

<x>

 <y>y03</y>

 <y>y04</y>

</x>

Page | 25

9. Location Paths
A location path is an XPath expression used for selecting a set of nodes relative to the context node.

The evaluation of a location path expression results in a node-set containing the nodes specified by

the location path. A location path can recursively contain expressions used to filter sets of nodes.

Syntactically, a location path consists of one or more location steps, each separated by a forward

slash (/):

locationstep/locationstep/locationstep

Each location step in turn selects a set of nodes relative to the context node — that is, to the node

selected by the preceding location step. A location path expressed this way is a relative location path.

An absolute location path starts from the root element:

/locationstep/locationstep/locationstep

In a location path, location steps are evaluated from left to right. The leftmost location step selects a

set of nodes relative to the context node. These nodes then become the context used to process the

next location step. This processing of steps and updating of the context node repeats itself until all

the location steps have been processed.

A location path can be unabbreviated or abbreviated.

In an unabbreviated location path, a location step has the following syntax:

axis::node-test[predicate]

In this syntax, axis specifies how the nodes selected by the location step are related to the context

node; node-test specifies the node type and expanded name of the nodes selected by the location

step; and predicate is a filter expression to further refine the selection of nodes in the location step.

Predicates are optional. In this case, a location step consists of axis:: and node-test only. The

following table provides some examples.

Unabbreviated Location Path Description

child::para[last()] Selects the last <para> element of the context node.

parent::para Selects the <para> element that is the parent of the context node.

child::text() Selects all text node children of the context node.

child::div/child::para Selects the <para> child elements of the <div> element that is a
child of the context node.

In an abbreviated location path, the axis specifier, axis::, is not expressed explicitly in a location step,

but implied by a set of shortcuts instead. The following table provides some examples.

Abbreviated Location Path Description

para Selects the <para> elements of the context node.

../para Selects the <para> element that is the parent of the context node.

text() Selects all text node children of the context node.

./div/para Selects the <para> element children of the <div> element children of
the context node.

Page | 26

The following is a summary of some of the abbreviations:

Unabbreviated Abbreviated

child::* *

attribute::* @*

/descendant-or-self::node() //

self::node() .

parent::node() ..

10. XPath Examples
This topic reviews the syntax examples that appear throughout the XPath Reference. All are based on

the Sample XML File for XPath Syntax (inventory.xml). For an example of using an XPath expression in

a test file, see "Example of Unions (|)", at the bottom of this topic.

Expression Refers to

./author All <author> elements within the current context. Note that
this is equivalent to the expression in the next row.

author All <author> elements within the current context.

first.name All <first.name> elements within the current context.

/bookstore The document element (<bookstore>) of this document.

//author All <author> elements in the document.

book[/bookstore/@specialty=@style] All <book> elements whose style attribute value is equal to
the specialty attribute value of the <bookstore> element at
the root of the document.

author/first-name All <first-name> elements that are children of an <author>
element.

bookstore//title All <title> elements one or more levels deep in the
<bookstore> element (arbitrary descendants). Note that
this is different from the expression in the next row.

bookstore/*/title All <title> elements that are grandchildren of <bookstore>
elements.

bookstore//book/excerpt//emph All <emph> elements anywhere inside <excerpt> children of
<book> elements, anywhere inside the <bookstore>
element.

.//title All <title> elements one or more levels deep in the current
context. Note that this situation is essentially the only one
in which the period notation is required.

author/* All elements that are the children of <author> elements.

book/*/last-name All <last-name> elements that are grandchildren of <book>
elements.

/ All grandchildren elements of the current context.

*[@specialty] All elements with the specialty attribute.

@style The style attribute of the current context.

price/@exchange The exchange attribute on <price> elements within the
current context.

Page | 27

price/@exchange/total Returns an empty node set, because attributes do not
contain element children. This expression is allowed by the
XML Path Language (XPath) grammar, but is not strictly
valid.

book[@style] All <book> elements with style attributes, of the current
context.

book/@style The style attribute for all <book> elements of the current
context.

@* All attributes of the current element context.

./first-name All <first-name> elements in the current context node. Note
that this is equivalent to the expression in the next row.

first-name All <first-name> elements in the current context node.

author[1] The first <author> element in the current context node.

author[first-name][3] The third <author> element that has a <first-name> child.

my:book The <book> element from the my namespace.

my:* All elements from the my namespace.

@my:* All attributes from the my namespace (this does not include
unqualified attributes on elements from the my
namespace).

Note that indexes are relative to the parent. Consider the following data:

<x>

 <y/>

 <y/>

</x>

<x>

 <y/>

 <y/>

</x>

Expression Refers to

x/y[1] The first <y> child of each <x>. This is equivalent to the expression in the
next row.

x/y[position() = 1] The first <y> child of each <x>.

(x/y)[1] The first <y> from the entire set of <y> children of <x> elements.

x[1]/y[2] The second <y> child of the first <x>.

The remaining examples refer to the Sample XML file for XPath.

Expression Refers to

book[last()] The last <book> element of the current context node.

book/author[last()] The last <author> child of each <book> element of the current
context node.

(book/author)[last()] The last <author> element from the entire set of <author>
children of <book> elements of the current context node.

book[excerpt] All <book> elements that contain at least one <excerpt>

Page | 28

element child.

book[excerpt]/title All <title> elements that are children of <book> elements that
also contain at least one <excerpt> element child.

book[excerpt]/author[degree] All <author> elements that contain at least one <degree>
element child, and that are children of <book> elements that
also contain at least one <excerpt> element.

book[author/degree] All <book> elements that contain <author> children that in turn
contain at least one <degree> child.

author[degree][award] All <author> elements that contain at least one <degree>
element child and at least one <award> element child.

author[degree and award] All <author> elements that contain at least one <degree>
element child and at least one <award> element child.

author[(degree or award) and
publication]

All <author> elements that contain at least one <degree> or
<award> and at least one <publication> as the children.

author[degree and
not(publication)]

All <author> elements that contain at least one <degree>
element child and that contain no <publication> element
children.

author[not(degree or award) and
publication]

All <author> elements that contain at least one <publication>
element child and contain neither <degree> nor <award>
element children.

author[last-name = "Bob"] All <author> elements that contain at least one <last-name>
element child with the value Bob.

author[last-name[1] = "Bob"] All <author> elements where the first <last-name> child
element has the value Bob. Note that this is equivalent to the
expression in the next row.

author[last-name [position()=1]=
"Bob"]

All <author> elements where the first <last-name> child
element has the value Bob.

degree[@from != "Harvard"] All <degree> elements where the from attribute is not equal to
"Harvard".

author[. = "Matthew Bob"] All <author> elements whose value is Matthew Bob.

author[last-name = "Bob" and
../price > 50]

All <author> elements that contain a <last-name> child element
whose value is Bob, and a <price> sibling element whose value
is greater than 50.

book[position() <= 3] The first three books (1, 2, 3).

author[not(last-name = "Bob")] All <author> elements that do not contain <last-name> child
elements with the value Bob.

author[first-name = "Bob"] All <author> elements that have at least one <first-name> child
with the value Bob.

author[* = "Bob"] All author elements containing any child element whose value
is Bob.

author[last-name = "Bob" and
first-name = "Joe"]

All <author> elements that have a <last-name> child element
with the value Bob and a <first-name> child element with the
value Joe.

price[@intl = "Canada"] All <price> elements in the context node which have an intl
attribute equal to "Canada".

degree[position() < 3] The first two <degree> elements that are children of the
context node.

p/text()[2] The second text node in each <p> element in the context node.

ancestor::book[1] The nearest <book> ancestor of the context node.

ancestor::book[author][1] The nearest <book> ancestor of the context node and this

Page | 29

<book> element has an <author> element as its child.

ancestor::author[parent::book][1] The nearest <author> ancestor in the current context and this
<author> element is a child of a <book> element.

10.1. Example of Unions (|)
To demonstrate the union operation, we use the following XPath expression:

x | y/x

selects all the <x> elements whose values are green or blue in the following XML file:

XML File (data1.xml)

<?xml version='1.0'?>

<?xml-stylesheet type="text/xsl" href="union.xsl"?>

<root>

 <x>green</x>

 <y>

 <x>blue</x>

 <x>blue</x>

 </y>

 <z>

 <x>red</x>

 <x>red</x>

 </z>

 <x>green</x>

</root>

XSLT File (union.xsl)

<?xml version='1.0'?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="root">

 <xsl:for-each select="x | y/x">

 <xsl:value-of select="."/>,

 <xsl:if test="not(position()=last())">,</xsl:if>

 </xsl:for-each>

</xsl:template>

</xsl:stylesheet>

Formatted Output

green,blue,blue,green

Processor Output

Page | 30

<?xml version="1.0" encoding="UTF-16"?>green,blue,blue,green

11. XPath Functions
You can use XML Path Language (Xpath) functions to refine XPath queries and enhance the

programming power and flexibility of XPath.

The functions are divided into the following groups.

Function Description

Node-Set Takes a node-set argument, returns a node-set, or returns/provides
information about a particular node within a node-set.

String Performs evaluations, formatting, and manipulation on string arguments.

Boolean Evaluates the argument expressions to obtain a Boolean result.

Number Evaluates the argument expressions to obtain a numeric result.

Microsoft XPath
Extension
Functions

Microsoft extension functions to XPath that provide the ability to select nodes
by XSD type. Also includes string comparison, number comparison, and
date/time conversion functions.

Each function in the function library is specified using a function prototype that provides the return

type, function name, and argument type. If an argument type is followed by a question mark, the

argument is optional; otherwise, the argument is required. Function names are case-sensitive.

11.1. Node-Set Functions
Node-set functions take a node-set argument. They return a node-set, or information about a

particular node within a node-set.

Node-Set Function Description

count Returns the number of nodes in the node-set argument.

id Selects elements by their unique ID.

last Returns a number equal to context size of the expression evaluation
context.

local-name Returns the local part of the expanded name of the node in the node-
set argument that is first in document order.

name Returns a string containing a QName representing the expanded name
of the node in the node-set argument that is first in document order.

namespace-uri Returns the namespace Uniform Resource Identifier (URI) of the
expanded name of the node in the node-set argument that is first in
document order.

position Returns the index number of the node within the parent.

11.2. String Functions [XPath]
String functions are used to evaluate, format, and manipulate string arguments, or to convert an

object to a string.

Page | 31

String Functions Description

concat Returns the concatenation of the arguments.

contains Returns true if the first argument string contains the second argument
string; otherwise returns false.

normalize-space Returns the argument string with the white space stripped.

starts-with Returns true if the first argument string starts with the second argument
string; otherwise returns false.

string Converts an object to a string.

string-length Returns the number of characters in the string.

substring Returns the substring of the first argument starting at the position
specified in the second argument and the length specified in the third
argument.

substring-after Returns the substring of the first argument string that follows the first
occurrence of the second argument string in the first argument string.

substring-before Returns the substring of the first argument string that precedes the first
occurrence of the second argument string in the first argument string.

translate Returns the first argument string with occurrences of characters in the
second argument string replaced by the character at the corresponding
position in the third argument string.

11.3. Boolean Functions
The XML Path Language (XPath) syntax supports Boolean functions that return strings or numbers,

and can be used with comparison operators in filter patterns.

Boolean Functions Description

boolean Converts the argument to a Boolean.

false Returns false.

lang Returns true if the xml:lang attribute of the context node is the same as
the argument string.

not Returns true if the argument is false, otherwise, false.

true Returns true.

11.4. Number Functions
The XML Path Language (XPath) syntax supports Number functions that return strings or numbers

and can be used with comparison operators in filter patterns.

Number Functions Description

ceiling Returns the smallest integer that is not less than the argument.

floor Returns the largest integer that is not greater than the argument.

number Converts the argument to a number.

round Returns an integer closest in value to the argument.

sum Returns the sum of all nodes in the node-set. Each node is first
converted to a number value before summing.

Page | 32

11.5. Microsoft XPath Extension Functions
MSXML provides a number of extension functions to offer additional features beyond those specified

in the XPath Version 1.0 specification. Some of these extension functions enable manipulations of

nodes based on their XSD data types. Others provide some popular utilities, such as lexicographical

comparison of strings, formatting times and dates, converting date/time to Coordinated Universal

Time units, etc.

The names of extended functions must be of qualified name consisting of a namespace URI (or its

proxy), a colon, and a local part. Microsoft XPath extension functions typically sport a ms prefix that

has been associated with the namespace URI ("urn:schemas-microsoft-com:xslt") for the Microsoft

extension functions.

11.5.1. XPath Extension Functions for XSD Support

Function Description

ms:type-is Compares the current node's data type against the specified node
type.

ms:type-local-name
([node-set])

Returns the nonqualified name of the XSD type of the current node or
the first node (in document order) in the provided node-set.

ms:type-namespace-uri
([node-set])

Returns the namespace URI associated with the XSD type of a current
node or the first node (in document order) in the provided node-set.

ms:schema-info-available Returns true if XSD information is available for a current node.

11.5.2. XPath Extension Functions of Miscellaneous Utilities

Function Description

ms:string-compare Performs lexicographical string comparison.

ms:utc Converts the prefixed date/time related values into Coordinated
Universal Time and into a fixed (normalized) representation that can
be sorted and compared lexicographically.

ms:namespace-uri Resolves the prefix part of a qualified name into a namespace URI.

ms:local-name Returns the local name part of a qualified name by stripping out the
namespace prefix.

ms:number Takes a string argument in XSD format and converts it into an XPath
number.

ms:format-date Converts standard XSD date formats to characters suitable for output.

ms:format-time Converts standard XSD time formats to characters suitable for output.

Page | 33

12. Source
http://msdn2.microsoft.com/en-us/library/ms256471.aspx

http://msdn2.microsoft.com/en-us/library/ms256199.aspx

http://msdn2.microsoft.com/en-us/library/ms256122.aspx

http://msdn2.microsoft.com/en-us/library/ms256090.aspx

http://msdn2.microsoft.com/en-us/library/ms256060.aspx

http://msdn2.microsoft.com/en-us/library/ms256081.aspx

http://msdn2.microsoft.com/en-us/library/ms256135.aspx

http://msdn2.microsoft.com/en-us/library/ms256074.aspx

http://msdn2.microsoft.com/en-us/library/ms256039.aspx

http://msdn2.microsoft.com/en-us/library/ms256086.aspx

http://msdn2.microsoft.com/en-us/library/ms256138.aspx

Other Resources

For more information, see the XML Path Language (XPath) Version 1.0 (W3C Recommendation 16

November 1999) at www.w3.org/TR/xpath.

Page | 34

13. Appendix A – Inventory XML
Sample XML File for XPath Syntax (inventory.xml)

This XML file is used by some topics in the XPath Reference documentation. This file represents a

fragment of a bookstore inventory database.

XML File (inventory.xml)

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="myfile.xsl" ?>

<bookstore specialty="novel">

 <book style="autobiography">

 <author>

 <first-name>Joe</first-name>

 <last-name>Bob</last-name>

 <award>Trenton Literary Review Honorable Mention</award>

 </author>

 <price>12</price>

 </book>

 <book style="textbook">

 <author>

 <first-name>Mary</first-name>

 <last-name>Bob</last-name>

 <publication>Selected Short Stories of

 <first-name>Mary</first-name>

 <last-name>Bob</last-name>

 </publication>

 </author>

 <editor>

 <first-name>Britney</first-name>

 <last-name>Bob</last-name>

 </editor>

 <price>55</price>

 </book>

 <magazine style="glossy" frequency="monthly">

 <price>2.50</price>

 <subscription price="24" per="year"/>

 </magazine>

 <book style="novel" id="myfave">

 <author>

 <first-name>Toni</first-name>

 <last-name>Bob</last-name>

 <degree from="Trenton U">B.A.</degree>

Page | 35

 <degree from="Harvard">Ph.D.</degree>

 <award>Pulitzer</award>

 <publication>Still in Trenton</publication>

 <publication>Trenton Forever</publication>

 </author>

 <price intl="Canada" exchange="0.7">6.50</price>

 <excerpt>

 <p>It was a dark and stormy night.</p>

 <p>But then all nights in Trenton seem dark and

 stormy to someone who has gone through what

 <emph>I</emph> have.</p>

 <definition-list>

 <term>Trenton</term>

 <definition>misery</definition>

 </definition-list>

 </excerpt>

 </book>

 <my:book xmlns:my="uri:mynamespace" style="leather" price="29.50">

 <my:title>Who's Who in Trenton</my:title>

 <my:author>Robert Bob</my:author>

 </my:book>

</bookstore>

